

Gemini IRAF VM tutorial

Instructions for running Astroconda (32-bit) IRAF on MacOS 10.15 or later,
under an x86 Linux virtual machine.

A link to the previous instructions for VirtualBox can be found below, but they
do not work on newer M1/M2 (ARM) Apple machines, nor can VMWare or
Parallels run Gemini IRAF on those machines.

This method uses QEMU [https://www.qemu.org] to emulate x86_64 hardware on
ARM64, which works well, producing the same results as on a Linux machine, but
with a large performance penalty. A test case using GMOS multi-slit data took
14 times as long to run on an M1 machine as when running natively on a
recent i7 processor, with the overhead varying considerably between different
processing steps. This is, however, the only way of running the necessary
IRAF packages on new Apple CPUs (at least prior to MacOS 13).

Compared with the original 2020 release for VirtualBox, the new Gemini IRAF VM
image has the following features:

	A new control interface, GemVM.

	A simpler installation method, using Anaconda / Miniconda.

	The latest Gemini IRAF 1.15.

	The latest DRAGONS 3.0.3. 1

	A new version of PyRAF (2.2.1) that is fully compatible with Python 3.

	More recent Anaconda (2021.11) package versions.

	The (unofficial) PyFU scripts for mosaicking IFU datacubes.

	Support for compiling IRAF packages.

	Miscellaneous OS updates etc.

Contents:

	Installation & setup
	Get the installation files

	Set up Anaconda on your host machine

	Install GemVM

	Set up the VM

	Starting the VM & logging in

	Sharing data with the host

	Using the VM

	Shutting down the VM

	Other things to know

	Troubleshooting
	Failure to start

	Time-Outs

	Helpdesk

	Old VirtualBox instructions
	Installation & setup

	Starting the VM & logging in

	Using the VM

	Shutting down the VM

	Other important notes

	1

	You should run DRAGONS directly on your host machine instead, unless
you really need to use it in conjunction with IRAF.

Installation & setup

Get the installation files

	Download the IRAF VM disk image file (gemini-IRAF-CO7-2022.07.zip)
from Google Drive. This is 5GB in size, so will take a while to transfer.

	If you’re using Apple’s Safari Web browser, it will probably unzip the file
for you automatically. Otherwise, you can open a terminal window, go to the
directory where the file was downloaded (usually cd Downloads) and type
unzip gemini-IRAF-CO7-2022.07.zip (or use another archive manager) to
extract it.

	To ensure the integrity of the download, type
shasum gemini-IRAF-CO7-2022.07.qcow2 and verify that the resulting
checksum is 932d9db4224429cb326bfe969253ec9e75253dcc; if not, you
should try downloading again.

	If you don’t already have Anaconda installed on your host machine,
download it from anaconda.com (noting the non-commercial
terms of service for their repository). You may use Miniconda if you prefer.

Warning

You should normally download Anaconda’s “64-Bit Command Line Installer”
for Intel, even on Apple M1/M2 (ARM64) machines, not the “64-Bit
(M1)” installer.

Anaconda’s new M1 installer can be used, but there is no DRAGONS build
for it yet (as of mid 2022), which is needed for reducing Gemini imaging
(and eventually spectroscopic) data in Python. In the meantime, a small
M1-native enviroment can be created within the Intel/MacOS version of
Anaconda, allowing the IRAF VM to coexist easily with DRAGONS.

Set up Anaconda on your host machine

If you haven’t already done so, you should install Anaconda as for
DRAGONS installation (or following Anaconda’s instructions). Make sure that the
necessary conda channels are defined, as in the section “Set up Anaconda
Channels” of that page. It is not obligatory to install DRAGONS itself. Don’t
install Gemini IRAF, since that’s provided by the VM (on MacOS 10.15+).

Install GemVM

With the Anaconda base environment activated (type conda activate) and
Gemini’s public conda channel defined (see the DRAGONS link above), issue the
following command to install GemVM and its dependencies:

	Apple M1/M2 (ARM64) host machines:

	CONDA_SUBDIR=osx-arm64 conda create -n gemvm gemvm

	Intel host machines:

	conda create -n gemvm gemvm

Set up the VM

	Place the VM disk image that you downloaded earlier in a safe, permanent
location (such as ~/GemVM/). If anything happens to this file, you will
lose the entire contents of the VM. The file will initially occupy 14GB of
disk space, growing to a maximum of 50GB as you create data files on the VM.

	Run gemvm-config to assign a name/label (and any other parameters you
want to tweak) to the downloaded VM image, eg.:

conda activate gemvm
gemvm-config add IRAF-2022.07 ~/GemVM/gemini-IRAF-CO7-2022.07.qcow2

where IRAF-2022.07 is the name you wish to use. Referring to the VM image
by an assigned name is both more convenient and safer than typing the file
path every time, since it’s easy to work in another directory, with less risk
of inadvertently deleting the image.

Starting the VM & logging in

	Make sure the appropriate conda environment is activated in your terminal
window:

conda activate gemvm

	Start the VM as follows:

gemvm IRAF-2022.07

(where IRAF-2022.07 is whatever name you assigned to the VM in
Set up the VM).

For additional options, refer to the help output from gemvm -h.

The status shown in the terminal will change from “booting” to “running”
once the VM is ready to log into (which should take less than a minute).
See Troubleshooting if that doesn’t happen.

[image: _images/GemVM.png]

The GemVM control screen, running in a terminal window.

If there is not a large enough block of memory available (3GB by default),
GemVM will ask you to try re-starting any large programs, such as your Web
browser; see Failure to start.

	Log in “remotely” to the VM with X11 forwarding, by typing the following
command in at least one other terminal window:

ssh -Y -p 2222 irafuser@localhost

The port number (2222) might vary if you override it. The password should
appear above the login prompt and is unchanged from the previous (VirtualBox)
version of the VM.

Note

Use -Y, rather than -X, to help avoid time-outs that can cause
graphics display to stop working.

Sharing data with the host

In order to share files between the VM and your host machine, you can mount a
subdirectory from the host on /home/irafuser/vm_transfer, using sshfs.

For example, if your username is gumby and you wish to copy files to/from
/home/gumby/data, you can log onto the VM as irafuser and issue the
following command:

sshfs gumby@vmhost:data/ ~/vm_transfer/

where vmhost is a literal alias for your host machine. Any path after the
colon that doesn’t begin with a / is relative to your home directory.
Remember you’re entering the password for gumby, not irafuser.

To umount the shared directory again (so you can mount a different one), type
fusermount -u ~/vm_transfer.

Note

The vm_transfer directory is intended for sharing input & output
files, not for processing data in. It’s suggested that you keep raw input
files there and set the rawpath parameter of the relevant Gemini IRAF
tasks to point to vm_transfer from your working directory. Then when
your data reduction is complete, you can copy the final results back there.

When using GemVM rather than VirtualBox, you can work directly in
vm_transfer if you really want to, but data processing will take
roughly 3-4x as long (and is already slow when emulating Intel Linux on
M1). You can fit about 40GB of data on the VM itself, as long as your host
machine has that much space available for the expanded disk image.

Note

If you wish to mount shared directories without having to enter a
password, you may create an ssh key pair on the VM and install the public
key (eg.~/.ssh/id_rsa.pub) on your host machine. We cannot do that
for you without compromising your security, but a Web search (eg. for
“linux ssh key pair login”) will turn up many tutorials explaining what to
do. Make sure that the disk image (qcow2 file) on your host machine is
not readable by other users, since it can now be used to gain access to
your host machine!

Using the VM

	The VM comes with an ~/iraf directory, containing a default login.cl
& uparm/.

	The geminiconda environment is activated automatically on login.

	Start DS9 (or XImtool) and PyRAF in your VM session:

ds9 &
cd iraf
pyraf
gemini

	You may then continue processing data as usual. All the IRAF packages from
Astroconda are available, along with emacs & vi.

	You can also use DRAGONS (and other conda packages), but it’s better to run
those directly on the host machine wherever possible, since processing data
on non-x86 machines is an order of magnitude slower when using the VM and you
are more likely to run into resource limitations there. Only the IRAF
packages require a VM on MacOS.

	You can administer the conda packages in /home/irafuser/miniconda3 as
usual, though conda commands might take some minutes to run on the VM. The
operating system (CentOS 7) installation is not intended to be
user-maintainable.

	It should be possible to leave the VM running while your laptop is suspended
and resume processing later – but you may find that the clock time is wrong
on the VM afterwards. There is currently no way to suspend the VM itself.

Shutting down the VM

	You can shut down the VM by pressing control-c at any time in the terminal
where gemvm is running. This does a clean ACPI shutdown (similar to
pressing the soft power button), but it’s best to stop any programs that are
running first, especially data reduction scripts. If the OS is still booting
when you press ctrl-c, you will have to wait for that to complete before the
shutdown starts, after which it should only take a few (~5) seconds.

	Occasionally, if something goes wrong with the boot or shut-down sequence,
GemVM might time out and return you to the command prompt, with QEMU still
running as a background process. See Time-Outs.

Other things to know

	While the VM is running idle in the background, it will probably use a few
percent of a CPU core, which may drain your laptop battery slightly faster
than usual.

	If you delete or overwrite the qcow2 file, you will lose all the files that
were on the VM (except those mounted under vm_transfer). To reduce the
risk of this happening, it is recommended that you keep that disk image in a
safe location, refer to it using a name defined in your configuration file
(not by its path) and run gemvm in another directory (such as ~).

	If your disk image (qcow2 file) is readable by other users on the same host
machine or network filesystem, they will be able to boot a copy and see all
of the files you have placed on the VM. For that reason, the image is
distributed in an archive file with restricted read permissions by default.
Do not let anyone obtain a copy of your disk image if you have installed an
ssh key that allows you to mount directories from your host machine without
a password! They will be able to log into your host account.

Troubleshooting

Failure to start

If gemvm returns you to the command prompt with an error status almost
immediately, the most likely reasons are:

	The VM image is already running. Either you have gemvm active in another
terminal or QEMU has become detached (eg. after a time-out) and is still
running in the background. The log file will say
Failed to get "write" lock and Is another process using the image
[<filename>]? at the top. If you can’t find an active gemvm control
screen, try logging into the VM with SSH (Starting the VM & logging in) and issue
sudo shutdown now when finished. Failing that, see Time-Outs
below.

	A large enough block of memory (by default 3GB) could not be allocated.
GemVM will tell you this and advise you to try re-starting any large
programs, such as your Web browser, to reduce memory fragmentation and usage.
On low-memory (eg. 4GB) systems, you might have to keep such programs closed
while using the VM, but it’s more likely that re-starting them will suffice.
If such errors persist, try reducing the VM’s memory allocation (in GB), by
specifying the -m argument to gemvm (or gemvm-config add, to
make it permanent). While not optimal, PyRAF can run on CentOS 7 in as little
as 0.5GB, or even 0.25GB with a modest amount of swapping. It is inadvisable
to try booting with <0.25GB of RAM, which could lead to pathologically slow
and/or problematic behaviour.

	The default ssh port (2222) is unavailable. The log file will say Could not
set up host forwarding rule 'tcp:127.0.0.1:2222-:22' at the top. This can
happen because another VM is already running using a different disk image.
To run another VM, you’ll need to increment the port number to 2223 using the
-p option (and so on).

	You have installed the Intel version of the GemVM stack on an M1/M2 machine.
This is an unstable and extremely slow combination, which won’t start at all
with the QEMU options passed by GemVM. The log file will say
Error: HV_ERROR near the top. Please remove the problematic environment
using conda remove -n <bad_env_name> --all (after doing
conda deactivate) and see Install GemVM for the correct
installation command.

Time-Outs

If something goes wrong with the boot or shut-down sequence (eg. due to
filesystem corruption), GemVM might time out and return you to the command
prompt. In this case, QEMU will probably still be running as a background
process. GemVM will try to print an informative message, including the process
number (if applicable). You can still try logging into the VM (if it has just
taken longer than normal to boot) and issuing sudo shutdown now as
irafuser once you have finished. If you can’t log in, try killing
qemu-system-x86_64 with no flags (ie. kill <pid>), which should cause
QEMU to flush its disk buffers before terminating without an error – that is
not a clean OS shutdown but is the next best thing. If that doesn’t stop the
process, you can clean up with kill -9 <pid> as a last resort.

If the VM persistently fails to boot, a --console option can be used to see
a boot screen that may provide additional information (please summarize any
errors as accurately as feasible in any helpdesk communications). How this
looks depends on the back-end QEMU capabilities and it might not be visible at
all if you run gemvm remotely.

Another reason for a time-out could be booting from a file that is not a valid
disk image (normally it will be a QCOW2 file). The log file will probably say
No bootable device near the end. You will have to kill QEMU manually in
this case. The stray background process should not consume a lot of resources,
but will tie up the default ssh port (see last bullet) and is best cleaned up.

Helpdesk

When requesting helpdesk support for problems related to starting, stopping or
logging into the VM, please send gemvm_<name>.log, from the directory where
you run gemvm (without the --console option). Wait until the
process has stopped before copying the log file.

Old VirtualBox instructions

These are the “old” instructions from 2020, for Apple machines with an Intel
CPU; they do not work on machines with an M1/M2 (ARM) processor, but you might
find it convenient to continue using this method on older Apple machines.

These instructions are for use with Virtual Box. You may prefer to import the
provided OVA file into some other virtualization software, in which case you
will have to determine how to adapt the following installation and start up
steps accordingly.

An alternative to using Gemini’s VM image as described here is to set up your
own virtual machine (including 32-bit OS libraries [https://astroconda.readthedocs.io/en/latest/faq.html#why-is-iraf-32-bit-instead-of-64-bit])
and install the Astroconda packages for Python 2 [http://www.gemini.edu/node/11823] on it. This is reportedly easy to do using
Parallels [https://www.parallels.com] (for a fee).

Contents:

	Installation & setup

	Starting the VM & logging in

	Using the VM

	Shutting down the VM

	Other important notes

Installation & setup

	Get the installation files

	Download the OVA file containing the IRAF VM image
(gemini-IRAF-CO7.ova) from Google Drive. This is 6GB in size, so will
take a while to transfer.

	To ensure the integrity of the download, you can open a terminal
window (see Starting the VM & logging in), type shasum Downloads/gemini-IRAF-CO7.ova
(substituting whatever path you downloaded it to) and verify that the
resulting checksum is 1881ae0afa3e9699ccec861b508a630787cf566d; if not,
you should try downloading again.

	Download the DMG file for the free version of Virtual Box from
https://www.virtualbox.org/wiki/Downloads, under OS X hosts. A checksum is also available on
that page, which you can verify using shasum -a 256 filename.dmg.

	Install Virtual Box

	Once the downloads are complete, go to Downloads and select the
VirtualBox DMG file to start the installer. Follow the instructions,
entering your personal password when prompted to do so. Your administrator
may have to perform this step, if you do not have software installation
privileges.

	Import the VM image

	Ensure that you have more than 16GB of available disk space for the VM
image in your home directory (if necessary, you may reclaim 6GB afterwards
by deleting the OVA file).

	Start the “VirtualBox” application.

[image: ../_images/file_menu.png]

The main VirtualBox Manager window and File menu.

	Go to File in the menu bar at the top of the screen, then Import
appliance. Press the icon to the right of the File box, go to
Downloads (or wherever you put the OVA file) and select
gemini-IRAF-CO7.ova. Press Continue in the main window.

Alternatively, double clicking on gemini-IRAF-CO7.ova may open it in
Virtual Box automatically, depending on your settings.

	Accept the default settings.

	Press Import and wait for the process to complete.

	Configure networking

	With the Oracle VM VirtualBox Manager window selected, go to File
in the menu bar at the top of the screen and select Host Network
Manager.

	Press Create at the top left of the Host Network Manager
window. This should automatically add an entry with network address
192.168.56.1/24 in the table beneath. Don’t enable DHCP Server
(unless you’re already using it for another purpose). Close the window.

	Make sure gemini-IRAF-CO7 is selected on the left-hand side of the
Oracle VM VirtualBox Manager window.

	Configure a shared data directory.

	Under your home directory (or another writeable location) on your host
machine, create a subdirectory for exchanging data files between the host
and the VM, eg. vm_transfer/.

	In the Oracle VM VirtualBox Manager window, press Settings, then
Shared Folders in the top row of icons, then the + icon to the
right of the main table. In the sub-window that pops up, set the Folder
Path to the directory you created on the host machine
(eg. /Users/<username>/vm_transfer) and the Mount Point to
/home/irafuser/vm_transfer (or similar). Select the Auto-mount
option (and Make Permanent, if you have it). Press OK and then
OK again in the parent window.

Starting the VM & logging in

	Press the Start arrow at the top of the Oracle VM VirtualBox Manager
window to turn on the VM. A console window will open and you will see the
machine booting in it. You don’t need to press anything when the boot menu
briefly appears. Once the machine has finished booting, you should see a
“Welcome to the Gemini IRAF VM!” banner with a login prompt underneath.

Warning

If your mouse pointer stops working, press the left command key to
toggle off mouse/keyboard capture by the VM window.

	Note the password shown in the banner in the console window.

	Minimize the console window, which is only used for controlling the VM and
not for processing data. The VM has no graphical desktop enviroment and
graphics are instead displayed to the host desktop using ssh and XQuartz.

	Log in remotely to the VM from one or more terminal window(s).

	Open a Terminal window (eg. by typing term in the Launchpad search
box and pressing the Terminal icon).

	Log in to the following fixed IP address with X11 forwarding, using the
password noted above:

ssh -Y irafuser@192.168.56.15

Note

Use -Y, rather than -X, to help avoid time-outs that cause
graphics display to stop working.

There is already an ~/iraf directory with a default login.cl &
uparm/.

The necessary conda environment is activated automatically on login.

Using the VM

	Start DS9 (or ximtool) & PyRAF in your VM session:

ds9 &
cd iraf
pyraf
gemini

	You may then continue processing data as usual. All the IRAF packages from
Astroconda are available, along with emacs & vi.

Warning

Don’t work in vm_transfer; use it for transferring input/output files.

When working in the directory shared with the host machine
(eg. vm_transfer), a problem has been observed where certain IRAF
tasks (including gdisplay) appear to run normally but only process one
image extension per file, or one of several files, producing incomplete
output. You should therefore work in another directory under
/home/irafuser (so that temporary files get written there), but you
can still keep input & output files in vm_transfer and point the
rawpath parameter of the appropriate IRAF tasks there, in order to
find them.

	You can also use DRAGONS (and other conda packages), but it is recommended
that you instead do that directly on the host machine where possible, as you
are more likely to run into resource limitations on the VM. Only the IRAF
packages in Astroconda require a 32-bit VM on MacOS >=10.15.

	You should be able to administer the conda packages installed in
/home/irafuser/anaconda2 as usual. The operating system (CentOS 7)
installation is not intended to be user-maintainable.

Shutting down the VM

	You can shut down the VM by clicking the close button ([image: close_button]) on the
upper left of the console window, or from Machine in the menu bar. To
shut it down completely, you can choose Send the shutdown signal / ACPI
shutdown, or you can Save the machine state to resume later where you
left off.

Other important notes

	While the VM is running idle in the background, it will probably use a
few percent of a CPU core, which may drain your laptop battery faster
than usual.

	If you delete the VM, you will likely lose all the files that were on it
(except those in the shared directory).

	Make sure you have read the warning about not working directly in the
vm_transfer directory under Using the VM.

Index

 _static/ajax-loader.gif

_images/close_button.png

_images/file_menu.png
@ VirtualBox [il[58 Machine Window Help

Import Appliance...
Export Appliance...

New Cloud VM... *
Virtual Media Manager... - v
Host Network Manager... pottings Discard . Start

"8 communityCO7 o= == General M| preview
« @) Powered Off Qo Name: communityCO7

Operating System: Red Hat (64-bit)
(8] system

Base Memory: 4096 MB communityCO7
Boot Order: Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging, PAE/NX, KVM
Paravirtualization

I pisplay

Video Memory: 16 MB
Scale-factor: 2.00

Graphics Controller: VMSVGA
Acceleration: 3D

Remote Desktop Server: Disabled
Recording: Disabled

Storage

Controller: IDE
Controller: SATA
SATA Port 1: communityCO7-disk001.vdi (Normal, 12.00 GB)
SATA Port 2: communityCO7-disk002.vdi (Normal, 12.00 GB)
Controller: SCSI

¢» Audio
Disabled
& Network

Adapter 1: Intel PRO/1000 MT Desktop (NAT)
Adapter 2: Intel PRO/1000 MT Desktop (Host-only Adapter, 'vboxnet0')

£ usB

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/GemVM.png
@® ® @ ' rtfuser — python3.10 ~/anaconda3/envs/test/bin/gemvm IRAF-2022.07 » gemu-system-x86_64 — 80..
L cenvk: Imar2e2ze7

Running v

Once booted, log in with:
ssh ~Y -p 2222 <username>@localhost

Press Ctrl-C to shut down

_static/file.png

nav.xhtml

 Table of Contents

 		
 Gemini IRAF VM tutorial

 		
 Installation & setup

 		
 Get the installation files

 		
 Set up Anaconda on your host machine

 		
 Install GemVM

 		
 Set up the VM

 		
 Starting the VM & logging in

 		
 Sharing data with the host

 		
 Using the VM

 		
 Shutting down the VM

 		
 Other things to know

 		
 Troubleshooting

 		
 Failure to start

 		
 Time-Outs

 		
 Helpdesk

 		
 Old VirtualBox instructions

 		
 Installation & setup

 		
 Starting the VM & logging in

 		
 Using the VM

 		
 Shutting down the VM

 		
 Other important notes

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

